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A bidimensional, spectral in time, quasi-linearised hydrodynamic 
ocean tide model has been developed at the Institut de M6canique de 
Grenoble. This model is derived from the classical shallow water equa- 
tions by removing velocity unknowns in the continuity equation, that 
leads to an elliptic, second-order differential equation where tide 
denivellation remains the only unknown quantity. The problem is 
solved in its variational formulation and the finite elements method is 
used to discretise the equations in the spatial domain with a Lagrange- 
P2 approximation. Bottom topography has to be known at the integra- 
tion points of the elements. In the case of the large oceanic basins, a 
specific method, called the bathymetry optimisation method, is needed 
to correctly take into account the bottom topography inside the model. 
The accuracy of the model's solutions is also strongly dependent on the 
quality of the open boundary conditions because of the elliptic charac- 
teristics of the problem. The optimisation method for open boundary 
conditions relies on the use of the in situ data available in the modelled 
domain. The aim of this paper is to present the basis of these optimisa- 
tions of bathymetry and open boundary conditions. An illustration of 
the related improvements is presented on the North Atlantic Basin. 
© 1994 Academic Press, Inc. 

1. I N T R O D U C T I O N  

In the already very advanced field of knowledge of 
oceanic tides, demands for accuracy have risen notably over 
these past few years, particularly because of the needs of 
altimetric satellite surveying of the sea surface. The tidal 
signal must be removed from the altimetric signal in order 
to give access to the so-called oceanic signal, which is the 
surface's real signature of the ocean's large and meso scale 
circulations. The accuracy required to make this correction 
had not been attained by the mid eighties with the existing 
world tidal models [ 1 ], hence there has been renewed 
interest in this field in recent years. Among this new work, 
an original hydrodynamic model, formulated by Le Provost 
and Poncet [2] in 1978 and first applied to coastal tides (cf. 
Le Provost et al. [ 3 ] ), has been extended to oceanic tides 
(cf. Vincent and Le Provost [4]). This model has recently 
been adapted to the resolution of tidal waves on a planetary 

scale with the objective of improving the existing overall 
solutions (i.e., Schwiderski [ 5 , 6 ] ] ,  noted NSWC, and 
Cartwright and Ray [ 7], noted CR), which are usually con- 
sidered as the best available solutions on the world ocean at 
the moment (in terms of spatial resolution and level of 
accuracy when comparing with tidal observations). The first 
applications to regional basins (cf. Vincent and Le Provost 
[4])  have shown the ability of the model to represent the 
tidal dynamics correctly both in oceanic and coastal regions 
and provided a validation of its formulation by the high 
level of precision of its solutions. This model has been 
applied to the large oceanic basins (by Genco [8] in the 
North and South Atlantic, Lyard [9] in the Indian Ocean, 
and Canceill [10] in the Pacific Ocean) with an optimal 
resolution in order to provide accurate tidal charts on the 
World Ocean. As a first step, the model was simply extended 
to planetary basins, without any change in the modelling 
procedures, described by Le Provost and Vincent [11]. 
However, the tidal solutions obtained in this way, although 
better over shelf or coastal regions, were generally of the 
same level of accuracy as the NSWC or CR models in deep 
ocean areas. These results could already have been con- 
sidered satisfactory, but the authors were convinced that 
better results were attainable, particularly in view of the 
preliminary results previously obtained in regional applica- 
tions. Because of the loss of precision, possible causes of 
model deteriorations were sought in the numerical and 
input data fields. The performance of finite element models 
based on the wave continuity equation have already been 
studied by many authors (see for example, Lynch [ 12] and 
Kolar et al. [ 13 ] ). Two specific points were finally identified 
as being the main sources of the problems observed. The 
first point is the discretisation error in the integral terms of 
the variational formulation of the model. The necessary 
spatial resolution in shelf and coastal regions leads to major 
linear systems which may be very sensitive to the propaga- 
tion of numerical and discretisation errors (the meaning of 
these two terms will be defined precisely in the second sec- 
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tion). The second point concerns the strong dependence of 
the accuracy of the solutions on the quality of the conditions 
prescribed at the open boundaries. Moreover, the dis- 
crepancy between the conditions and truth can be amplified 
inside the modelling domain. This dependence is due to the 
elliptic characteristic of the model. Nevertheless, because of 
the lack of in situ oceanic observations along the open basin 
limits, boundary conditions have to be drawn from existing 
overall or regional models which obviously are not perfect. 

The purpose of this paper is to describe the improvements 
introduced into the model of Le Provost and Vincent [ 11 ] 
enabling the production of more precise tidal solutions on 
an overall scale. In the first section a technique is presented 
for minimising the discretisation error by adjusting the dis- 
crete description of the bottom topography used in the 
model. A set of criteria that permit the definition of a 
numerically optimal model bathymetry is proposed. In the 
second part, an open boundary condition optimisation 
method is described. This method is similar to an optimal 
control [ 14] using a first solution as the reference and a set 
of available in situ data inside the domain. Optimised open 
boundary conditions are obtained by solving a least-squares 
problem, minimising the discrepancy between the solution 
and the observations. A new solution can then be obtained 
by solving the direct problem using the newly found 
optimised boundary conditions. In the third part of the 
paper, modelling of the M2 tide on the North Atlantic Basin 
is used as an illustration of the gain in precision that can be 
expected by using these two methods. 

friction is taken into account by a Chezy-like law, while the 
internal friction is ignored. In order to avoid numeric 
instability (cf. Lynch [ 15 ]) and to reduce the number of 
unknowns, velocity is removed from the continuity equa- 
tion by using a quasi linearisation of momentum equations 
that leads to an elliptic, second-order differential equation, 
called the wave continuity equation [ 16 ], where the tidal 
elevation remains the only unknown quantity to be 
computed (the hydrodynamic equations are detailed in 
Appendix II). The variational formulation of the problem is 
discretised in the spatial domain by the finite element 
method, using a triangular mesh associated with a 
Lagrange-P2 approximation (the discrete model equations 
are detailed in Appendix II). The finite element method was 
chosen because of the elliptic nature of Eq. (32) and the need 
for a variable spatial resolution to adapt the mesh size in a 
consistent way to the local wavelength (the wavelength of a 

tidal wave can be expressed by A = ( 2 n / ~ o ) ~ ) .  The 
model mesh is automatically built by the mesh generator 
TRIGRID [17] which can be constrained by the 
bathymetry. The typical resolution at the closed boundaries 
is about 15 km between two nodes, making it possible to 
take into account the smaller tidal wavelength on continen- 
tal shelves, where most dissipation of the tidal energy takes 
place. The spatial resolution increases to about 200 km in 
the deep ocean. Discretisation of the large oceanic basins 
leads to meshes which contain roughly 15000 elements (i.e., 
30000 complex unknowns in the Lagrange-P2 approxima- 
tion). 

1. T H E  M O D E L  

The basic characteristics of our hydrodynamic model are 
presented here. In order to simplify the presentation, nota- 
tion definitions and model equations have been moved to 
Appendices I and II and Fig. 1. The basic equations used in 
barotropic tidal motion models are the classic non-linear, 
depth-averaged shallow water equations in geocentric 
coordinates. Forcing includes astronomical sun and moon 
potential, plus loading and self-attraction effects. Bottom 
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FIG, 1. Affine transform T~ from a real world element Q1 to the 
reference element R for the Lagrange-P2 approximation. The ith node of 
R is the image of the real world node n which appears in ith position of the 
anticlockwise description of£2,. 

2. O P T I M I S A T I O N  O F  M O D E L  B A T H Y M E T R Y  

Over continental shelves and in the deep ocean, tidal 
wavelengths vary from a few hundred kilometres to a few 
thousand and more. For that reason, it is generally admitted 
that tidal waves are not sensitive to the small wavelengths of 
the bottom topography. So the most usual technique 
for obtaining model bathymetry from data consists in 
smoothing the original topographic data field by a 
Gaussian function. A similar procedure was used in the first 
applications of the model (Le Provost et al. [3]). In fact, 
an experiment has shown that this credo has to be 
reconsidered, particularly when the number of nodes in the 
model mesh increases to great values. This experiment 
involved slightly modifying the smoothing definition. The 
consequence was surprising changes in solutions, even in 
the deep ocean where differences between the two model 
bathymetries were apparently insignificant. The reason for 
this is that the way the bathymetry is taken into account in 
the matrix S coefficients contribute to the error budget of 
the discretisation of the variational equation. Let us 
examine a typical term of the integral Eq. (42): 

f f~ ~P,(m,t) ~P,(n,t) jtA,m,n - - - -  ~ A(2, ~0) cos q~ 0~p Oq~ d2 dcp. 
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Its numerical approximation by the Hammer formula minor part of the total modelling domain area, it may be 
gives assumed that 

NPG  

y+ = Jacobian(Tt) x ~ pkA(2k, cpk) A,m,n  
k = l  

OP,(m 1)1 OP,<.,+> <~k.+~)" 
x c o s  (#k . . . . . . .  

&P I<Xk,~,k) &P 

r,r' 4~o),f,, j~r--  fr' 4~o)2--f 2, r2--I-r'2 ~(-o2-- f 2. 

(4) 

The term A can thus be approximated almost everywhere 
by the serial development: 

The error due to the use of the Hammer formula is 
referred to as the integration error. The error due to the dis- 
cretisation of A when computing its value at the integration 
points is referred to as the discretisation error. Estimation of 
the discretisation and integration errors, i.e., e+ . . . .  = J+,m,, - 
Yt,,,,,M depends on the complexity in space of the term A, 
and, hence on the complexity in space of the bottom 
topography. It is not the aim of this paper to carry out a full 
numerical study on numerical integration. But the term A 
has some natural properties which enable that error to be 
cancelled almost everywhere by using a particular model 
bathymetry. 

In order to simplify the presentation, the statement is 
restricted to the case of the dominant wave. It would be 
analogous in the case of any other wave. Bottom friction 
terms related to the dominant wave are: 

r = r" = -~ R, r' = - r" = j ~ R'. (1) 

Replacing the coefficients r", r'" in the A expression yields 

gH (r + rio) 
A=--~-x(m2 f2+2fr, r,2 r2 2flor). (2) 

The value of r, r' can be estimated from Eq. (22), Eq. (23), 
and Eq. (24): 

r:O(9 ) r = O ( g u )  + 

Typical size scales for terms appearing in the expression 
of A are summarised in Table II, where deep ocean plus 
shelf regions and coastal regions are distinguished because 
of the great variation in bathymetry, velocity, and dissipa- 
tion scales between both cases. Dissipation terms vanish in 
the deep ocean, and remain of a much lower order than 
frequency and the Coriolis parameter over shelves, except in 
a very thin zonal band corresponding to the critical latitude 
of the wave. On the other hand, however, they may some- 
times be of the same order as the wave frequency or the local 
inertial frequency over coastal regions. Disregarding coastal 
regions and the critical latitude band, which represent a 

A ~  7 a ~ l _ l -  x 1 + 2  

/ ja~r - f r " ,  2 r' ~ + r ~ ] 
+ 2 + o + - - ? j  

(jo~r - fr') 
(.02 __ f 2  

(5) 

Removing terms of a greater order than two in Eq. (5) 
yields 

A ~ m  
gH ja~ [ j r  2(jo)r- fr') 
a2 c~2 f2  1 - ~ + ~  

O(r/co) 

jr 2(fior- fr') {jogr-- fr'~ 2 
o~ co~- f  ~ + 2 \ c o ~ - f 2 ]  + - -  

O(r2/o) 2 ) 

r'2+---r2 ]. 

Using the relation Eq. (1), A can be written 

g ,o [ 1] 
A ~ a 2 f o ~ f 2  H + c o L + C l  L2 = A I + A o + A  1, 

(6) 

where L =  Cfllul[/og< 1, Co = O(1), Cl = O(1). Thus dis- 
cretisation of the bathymetry is crucial for discretisation of 
A. The difficulty of discretising the bottom topography in a 
way that is consistent with the model comes from its high 
variability in the space aspect and this is the reason why 
smoothing procedures, which filter the small spatial scales, 
are usually used. But it is not easy to estimate the con- 
sistency of the filtering, as the tidal wavelength also varies 
with the depth, making it necessary to adapt the filter to 
local depths. Now let us suppose that the exact bathymetric 
field H is known all over the domain. Let /~ be the 
bathymetric field defined in a such way that its values at 
the integration points coincide with the depths given to the 
model (i.e., h is the extension to the whole element of 
the depth given at the integration points). This field, 
called the image field, as it is the image of the real world 
through the discretisation procedure, is rarely computed 
exhaustively, but it is practical here to consider the image 
field/~ as a discretisation of H and the values computed at 
the integration points as an interpolation of the image field. 
Then the question is "what is an image field able to transmit 
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consistent bathymetric information to the model through 
numerical integration?" Let us examine the first-order 
term as it is integrated (it is assumed here that the term 
cos q~/(co 2 _ f 2 )  is constant over an element): 

arm O fl, 11 = ffa~ AI cos q~ d2 dq~ 

gco cos q~o 
= Jacobian(Tz)j a2 (D 2 __f2 

[- (~P,(m l)oe,(n.l)~ 
x ffRLH ~-~" &P _](x,y) dxdy. 

Cancelling the discretisation and numerical integration 
errors leads to the following two conditions, which have to 
be respected by the model bathymetry/~, 

ffRf~(X, y) Q(x, y) dx dy 

= ~ p~h(xk, Yk) Q(xk, Yk) (7) 
N P G  

ffl H(X, y) Q(x, y) dx dy 

= ffR h(x, y) Q(x, y) dx dy 

VQ polynomial of degree n, (8) 

where n is equal to twice the degree of the derivative of the 
basis interpolation polynomials, i.e. 0 in the case of a 
Lagrange-P 1 approximation, 2 in the case of a Lagrange-P2 
approximation. An image field obtained by a smoothing 
method is almost satisfactory in the meaning of Eq. (7), 
when it is smooth enough, but it is not visibly satisfactory in 
the meaning of Eq. (8). On the other hand, an image field 
satisfying both Eq. (7) and Eq. (8) can be sought, for each 
element of the mesh, in the polynomial space, with the 
additional criterion that the degree of the solution should be 
as low as possible, i.e., n itself. Eq. (8) is equivalent to 
(n + 1 )(n + 2)/2 relations that can be summarised by: 

IIRH(X,y) xky'dxdy=~fgh(x,y)x~y'dxdy, k+l<.n. 

(9) 

With respect to Eq. (9), an optimal approximation of the 
bathymetry in the case of the Lagrange-P 1 approximation is 
the constant value equal to a 'mean' depth over the element 
defined by: 

hl~, (2, q,) =/~(x, y) = cste = jji~ H(x, y) Ox Oy 
IIR ax Oy ' 

where (2, q~) rj , (x,y).  

In the case of the P1 approximation, it may be noted that 
a model bathymetry obtained by a smoothing procedure, 
which maintains the mean values, almost satisfies Eq. (9) 
and that Eq. (7) is verified by using a Hammer formula 
based on one Gauss point. That definition is similar to the 
one proposed by Platzman [18]. In the case of the 
Lagrange-P2 approximation, for each element of the mesh, 
a polynomial approximation of degree 2 of the bathymetry 
which respects the momentum of an order equal to or lower 
than 2 of the "real" bathymetry can be computed from 
Eq. (9). The model bathymetry can be expressed on the 
basis of the P2-Lagrange polynomials: 

6 

]~[o, (.~., ~ ) =  ]2(x,y)= 2 fli( Pi° T,)(2, q~), 
i = 1  

where (2,(p) r~ (x,y) .  

Equation (7) is verified by using a Hammer formula 
based on seven Gauss points (see Table I). The model 
bathymetry thus obtained is continuous inside an element, 
but it is not automatically at the limit between two elements, 
because the hi coefficients are computed separately for 
each element. This does not present any particular problem 
unless the bathymetry has to be known at the nodes of the 
grid for a specific use. This difficulty can be partially 
eliminated by seeking the nearest bathymetry defined at the 
nodes, using a least-square method. 

Integration of the second term, corresponding to A0 in 
Eq. (6), does not present any particular problem because it 
varies like the norm of the velocity, which is almost linear 
over the triangle when using the P2-Lagrange approxima- 
tion. So Hammer's numerical approximation is satisfactory 
for the second term as well as for the first term. No par- 
ticular conclusion was reached about the effect of using a 
model bathymetry defined by Eq. (9) on the precision of 
third term integration, as this question was not investigated 
on the assumption that its amplitude is much smaller than 
that of term A 1 and A0 almost everywhere. It may be 
possible to perform a similar study in order to improve the 
model in regions where the basic assumption (i.e., Eq. (4)) 

T A B L E I  

Relation between the Number of Gauss Points in Hammer's 
Numerical Integration Method and the Maximum Degree m of the 
Exactly Integrated Polynomials 

Amount of Gauss points NPG Total degree m 

3 2 
6 4 
7 5 

12 6 
16 7 
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is no longer relevant. But, in addition to the fact that the 
effects would be very local, the consistency of the model 
bathymetry is not the major component of the model's error 
budget in the shallower areas. Actually, controlling dis- 
cretisation error by bathymetry terms can work efficiently 
only if the real bathymetry field is well known and it is now 
recognised that the data bank ETOPO5 [ 19], from which 
the bathymetry is drawn, is of very poor quality in very 
shallow spots such as on shore regions, although it is at 
present the best unclassified data set that civilians can use. 

In conclusion, minimisation of integration and discretisa- 
tion errors almost everywhere can be carried out by 
adjusting model bathymetry. Moreover, this study has 
indicated what bathymetric information is crucial to a finite 
element model when using a variational formulation. The 
model bathymetry must respect the average value of the 
bottom topography over each element in the case of a P1 
approximation, and the momentum of an order equal to or 
lower than 2 of the bot tom topography over each element in 
the case of a P2 approximation. 

3. BOUNDARY CONDITION OPTIMISATION 

4.1. Theoretical Approach: Introduction to the Least-Square 
Problem 

The validation of numerical models is usually based on a 
comparison of the solution with in situ observations which 
give local information on the accuracy of the solutions. An 
overall estimate of the model's quality is more difficult to 
achieve because it is not possible to define an absolute 
criterion. However, an assessment may be made by com- 
puting the RMS of the discrepancies between solutions and 
data on a representative set of control stations. In the 
following, the terms of accuracy and quality will be referred 
to that criterion. The elliptic shape of the model implies that 
the inner quality of the solutions is strongly dependent on 
the quality of the prescribed open boundary conditions. 
Thus determination of the boundary conditions is a critical 
point of the modelling strategy. The easiest way to prescribe 
the value of the solution on open boundaries is, of course, 
to possess in situ data along the limits. Unfortunately, it is 
usually not possible to choose the domain limits so that they 
will coincide with a chain of regularly sampled observation 
sites which could be used for obtaining boundary condi- 
tions. In such cases, an alternative strategy must be defined, 
which involves setting the domain limits inside areas where 
preexisting tidal models are available. Because of the uncer- 
tainty concerning the quality of such tidal models, these 
limits have to be set outside the critical areas where 
prescribing a value is known to amplify the model's sen- 
sitivity to boundary condition errors, such as the vicinity of 
amphidromic points, and inside regions where the pre- 
existing models are known to be of reasonable accuracy. 

In the case of a lack of accurate regional models, such as 
Flather's model in the North East Atlantic [ 20 ], the overall 
solutions NSWC or CR have to be used; thus the perfor- 
mance of a new model is at least limited by the quality 
of these solutions. As can be expected by considering 
the elliptic shape of the problem, some sensitivity tests 
have shown that errors due to boundary conditions are 
propagated and sometimes amplified far inside the 
modelling domain. Because the aim of the present model is 
to improve previous knowledge, it is necessary to improve 
that input parameter. Discretisation of the variational 
equation leads to a linear system, which can be written: 

N: number of nodes in the domain 

Nb: number of open boundary nodes 

Na: number of observations 

Nn : number of nodes needed to interpolate the solution at 
the observation stations 

S~ = F, where 

S = [ s i J :  linear system N x N complex matrix 

= [~i]: elevation N rows complex vector 

F =  [f~]: forcing N rows complex vector 

In order to take into account the open ocean boundary 
conditions, rows corresponding to open boundary nodes 
are transformed before the resolution of the linear system so 
that: 

f= oj if node i belongs to F2, where d,~ 

represent the Kronecker symbols. 

Considering the "cost" function defined by the variance of 
the discrepancies computed between a reference solution 
and a set of observations: 

~d: observation at station No. i 

~i: interpolation of the solution 0c at station No. i 

1 ~d 2 1 
J(O):Nobse~ations ] i - ~ i ]  =~/obse~ations leil z. 

Considering T the finite element interpolation matrix: 
T~ = 4, where 

= [~i]: Na rows complex vector 

T =  [ ti, j]: Nd x N matrix with t i j  = flj(2i, cpi) 

Perturbing the boundary conditions around the reference 
condition leads to a new solution, which can be written as 
the sum of the reference solution plus a perturbation 60~. 
This perturbation is explicitly defined by 

1 ~ 6 F  i = O, i ¢ F 2 
~o~ = S fiF with (fiFi = 6ct °, i ~ 1"2. 
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The corresponding cost function is defined by 

1 
J(t~°) = ~ ~ ]~d-- ~/-- t~il 2 

observations 

1 = ~  ~ [ e ; - J ~ [  2. 
observations 

The gradient of a scalar quantity J with respect to a com- 
plex value u is defined by 

OJ . OJ 
v~J= b-~ + ~ ~ , ,  where u ~ and u ~ are respectively 

the real and imaginary parts of u. 

(10) 

The solution of the least square problem is the perturba- 
tion such that 

V6~0 J(~0c 0) --- 0. 

Considering a system where u is an input vector and v is 
an output vector, the gradient of a scalar quantity J with 
respect to u can be linked to the gradient of J with respect 
to v: 

v = M ( u )  

gv = M'  Ju, where M'  is the Jacobian of M 

VuJ = M'* V~,J, where M'*  is the adjoint matrix of M'.  

In the linear case, this relation is simplified by 

v = m u  
(11) 

VuJ= M* V J  where M* is the adjoint matrix of M. 

As M is a complex-valued matrix, the adjoint matrix of M 
is the transposed conjugate matrix of M. Applying Eq. (11 ) 
to the gradient of the cost function yields 

V6~0 J((~0C 0) = ( S  - 1 ) ,  Vo0cj(6~xo) = --2(S --1)* T*(e - J~ ) .  

Finally the least square problem can be expressed by 

V~0 J(~) = 0 ~ (TS -1) ,  (TS  - ' ) [ e ; ]  = (S -~)* T*[ei],  

(12) 

where 

fei = 0, if the node iis an inner node 
~; - J F  with ~ 0 

(e; = 6 ~ ,  if the node iis an open boundary node. 

4.2. Theoretical Approach: The Regularised Least-Square 
Problem 

In practical applications, many situations have been 
encountered where the data are not sufficient to obtain an 

acceptable solution of the least square problem defined by 
Eq. (12). Some numerical tests have shown that the pertur- 
bations of the boundary conditions may attain some 
unrealistic values in terms of magnitude and gradients, 
when the decrease in the misfits is of only a few centimetres. 
The question of data sufficiency has already been discussed 
in the assimilation literature (see for example Thacker and 
Long, [21 ]). Briefly, some possible causes of troubles 
should be pointed out. First, the total amount of available 
data is most of the time much lower than the total number 
of open boundary nodes. Moreover, the spatial distribution 
is generally heterogeneous, and the dependency of the 
solution at the data points with respect to certain boundary 
conditions may be weak. The presence of corrupted data or 
model deficiencies can also affect the method. Thus the least 
square method may produce unacceptable results. To avoid 
this, a term must be added to minimise the boundary condi- 
tion pertubations, in addition to the original formulation. It 
may also be necessary to parametrise the perturbation in 
order to reduce the number of unknowns in the least square 
problem. A set of parameters is defined for each limit of the 
domain and the perturbations are defined by 

6~°(s) = ~ akA(s), 
K 

K is the number of parameters, where s is the curvilinear 
abscissa along the open boundaries, fk are analytic func- 
tions of s, and ak are the new unknowns of the least square 
problem. The shape of the parametrisation must be as 
consistent as possible with the tidal hydrodynamics. One 
possible shape is 

Nl 
JocO(s)=ak, o+ak, lX+ ~ (bk, ne 2"x/L,) 

n = l  
N2 

+ vf. (Ck, ne-2"~l x)/L2), 

where 

L1, L2: typical horizontal scales, 

£: limit segment length, 

x: dimensionless parameter, 

N1, N2: number of wavelengths used, 

x = S/gk, 2NL <~ Sk <- 2n + 1L. 

This formulation refers to the exponential dependence in 
space of the simpler long gravity wave solution for a basin 
on a rotating sphere, i.e., a Kelvin wave. The characteristic 
lengths Z 1 and L2 can be related to the external deformation 
radius Rd, 

R d = c / f  with c, the wave's celerity, c = ~ .  
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Experience shows that it is necessary to include the 
perturbation minimisation condition even in the case of 
parameterised perturbations. Furthermore, it makes sense 
to introduce a second derivative minimisation condition to 
avoid large variations in the perturbation gradient. The 
summation is weighted to modulate the influence of the 
different terms, making the new coast function: 

J(~)= ~ P~ le,-a~,(e)lZ + f qZ(s) I&°(s)l~ ds 
observations 

+ fr= w2(s) la~°"(s)12 ds (13) 

where &~o" = a26~O/Os2 is the second derivative of 6~0 along 
the t .'en limits. 

The positive coefficients p and q are weights related to the 
a priori trust given to the corresponding quantities. As the 
second derivative term reflects the correlation between 
the perturbations themselves, the positive coefficient w is 
related to the variability of the tidal dynamic along the open 
boundaries. In the case of parameterised perturbations, the 
dynamic already appears in the shape of the parametrisa- 
tion and the weight w can possibly be set to zero. As the 
optimisation procedure presented in this paper (see below) 
was applied using nonparameterised perturbations and, in 
order to simplify the presentation, only this case will be 
detailed in the following: 

J1 = E p2 lei_ a~i(~)[2 
observations 

V e J 1 -  ( T S - I )  * %g J 1 -  2 ( T S - 1 )  * M P ( a ~ - e ) ,  
(14) 

where M p= [p~fi~] and M p is a diagonal matrix. The 
physical interpretation of this particular shape is that the 
observation errors are assumed to be uncorrelated; we have 

qngnfin(S) 2 J2=fr2qZ(s) lel2 dS= fr  ~ ~ ds 
N 

= ~ qmqng~en fr2 tim(S) fin(S) ds, 
m,n 

defining the symmetrical coefficients 

fF2fim(S fin(S) ds = Bin, n. 

Developing J2 yields 

2B le, [2 .+_ E qmqnBm, n(gm 8n q- 8nt~'n) J z = E q n  n,n 
n m<n 

2 r r i i = ~ q.2Bn, n [e n 12 .~_ E qmq~Bmm(emen + green)" 
n m<n 

(15) 

The gradient of J2 with respect to the kth component of 
the boundary condition perturbation can be developed by 
using the relation Eq. (10), 

= 2qkBk,  k8 k "k E 2qmqkBm,kem = 2 ~, qmqkBm,kem,  Vekj 2 2 
rock m 

giving the gradient of J2 with respect to the perturbation 
vector in matrix notation 

V~J 2 = 2mq'e where M q' = [m~q'j] = [qiqjB~d]. 

In the case of a non-parameterised perturbation, the 
derivative is replaced by the finite difference discretisation: 

ej+ 1 - -e j  
, ~ j -  ~j 1 (g)J+ 1/2 -- - - "  

( )J -1 /2=Sj__Sj_  1' S j + I - - S  j 

The second-order derivative can be calculated approxi- 
mately by the discrete formula 

( e ) j  t = ( C ) j +  1/2 - -  (~ ) j - -  1/2 - -  K1 eJ - 1  ~_ /t72gJ At_ K3eJ+  1 
Sj + 1/2 --Sj_ 1/2 

in matrix notation: 

D"] = c D ] ,  

Cj, j--1 =K1,  Cj, j ~ ' K 2 ,  Cj, j+I  =K3,  

~j,~= o if k ¢ { j - l , j , j + l } .  

The third term of J can be developed in the same way as J2 : 

J3= fv2 w2(s)[g"12 ds = IF2 ~N Wng~fin(S) 2dS 

-" e" (16)  E WmWnlJm, ngm n. 
m,n 

Using relation Eq. (10) gives the gradient of J3 with 
respect to the perturbation vector in matrix notation V J 3  = 
C* V~,,J 3 = 2C*MW' g ' = 2C*MW' C~, where M w' = [mid'j] = 
[wiwsBid ]. Finally, l v J ( e )  = (TS-I)  * MP(a{ -- e) + 
Mq'~. + C*MW'g ". The optimal boundary condition pertur- 
bation is then the solution of the linear system, 

V~ J =  0 ¢:> [ (S - l )  * T*MPT(S -1 )+Mq '+C*MW'C][e , ]  

= ( S  1), r ,MP[e~].  (17) 

The corresponding solution can be obtained by solving 
the hydrodynamic problem, using the newly found 
boundary conditions. Nevertheless, it can also be directly 
computed by using the matrix S -  1, which is assumed to be 
known 

~ = ~  + 6 ~ = ~  + S - 1 ~ = ~  + ( S  -1) 

x [(S 1)* T*MPT(S  -1) -.kMq'-.k C*Mw'C] - '  

× (S 1), T , M p ( ~ d  Tcx) (18) 
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which is equivalent to 

= ot + got =- ot + [ T*MPT- t -  S * ( M q ' +  C * M w ' C ) S ]  -1 

× T*MP(~  a -  Tot). (19) 

4.3. The Link with the Generalised Least Square Me thod  

At this stage, the theoretical aspect of the assimilation 
problem has been entirely described. Nevertheless it makes 
sense to retrieve Eq. (19) by using the generalised least 
square formulation (cf. Tarantolla and Valette[22]), 
carried out by Jourdin [25]. Following Eq. (14), Eq. (15) 
and Eq. (16), the cost function J can be expressed in matrix 
notation by 

J =  (e - f ~ ) *  MP(e  - f ~ )  .-k ~,*Mq'~ + F,"*MW'~, ". 

Combining the perturbation of the solution on the one hand 
and the perturbation of the boundary conditions, on the 
other hand, yields 

J =  (e - TOot)* MP(e  - Trot) 

-so fot* S*( M q' -'b C* Mw' C) Slot 

= (e - Trot)* C f f l ( e  - Trot) -q.-fot*Cplfot 
C d  1 = M  p, C p  1 = S * ( M q ' +  C*Mw'C)S .  

The matrix C d 1 is analogous with the inverse matrix of the 
covariance matrix of an a priori error in the observations 
and C71 is analogous with the inverse matrix of the 
covariance matrix of an a priori error in the boundary con- 
ditions. In the space of the data (the tidal observations), the 
solution is 

= e + fie = e + C ~  l T * S f f l ( ~  d -  Tot), 

where Sd = Ca + TCp T*. 

In the space of the parameters (the tidal elevation), the 
solution is 

~ =ot q-fot =ot-lt- S p l  T * C  d l (~  d -  ToQ, 

where Sp = T * C d  1 T +  C ;  1 

which is identical to Eq. (19). In particular, the link between 
these two formulations confirms a posteriori that the solu- 
tion of the optimisation method in the discrete domain is the 
discretisation of the solution in the continuous domain, as 
Jourdin has shown that all operators in the least square 
formulation are compatible with the finite element dis- 
cretisation. 

4.4. Practical Aspects 

In practical cases, it was decided to use the formulation of 
Eq. (18), which implies a partial knowledge of the inverse 

matrix of S, i.e., the columns of the inverse matrix corre- 
sponding to the open boundary nodes. In order to simplify 
the notations, the N x Nb restriction of the inverse matrix 
of S will be noted S - 1. The coefficients of S - 1 are obtained 
simultaneously with the necessary reference solution. 
During resolution of the direct problem, the inverse matrix 
is never explicitly described, so the necessary coefficients are 
computed by using an impulsional response method, i.e. by 
solving the system: S - 1: N x N b matrix - [si. i ] defined by Is]['l 

I S ]  . . . .  [ L ] [ U ]  . . . . . . .  . 

S--I S--1 fn] n,j n,j 

When using a Gauss elimination solver, the additional 
cost to a single resolution is very low if the matrix factorisa- 
tion coefficients of U and L are stored because the solving 
procedure is fully vectored. This step has to be performed 
for each node j of the open boundaries, irrespective of the set 
of observations. Finally, the least-square formulation yields 

Nd: number of observations 

Nb: number of open boundary nodes 

N,: number of nodes needed to interpolate the solution at 
the stations 

- 1: Nn x N b restriction of S - 1 

T: N d × Nn restriction of T 

~ q ' ,  ~ r ' ,  ~: Nb X N b restriction of M q', M r', C 

= (~ -1) ,  ~,Mp~. 

The choice of the weights and their effects on the new 
boundary conditions and solution are a crucial point of the 
method. Direct evaluation of the observation weights may 
be computed from a priori error levels estimated from some 
information available concerning the tide gauges. In the 
same way, the perturbation weights may be computed from 
a priori error levels estimated by local intercomparisons 
between the original cotidal solutions, which have been 
used to extract the open boundary conditions, and data. In 
spite of its rigorous appearance, this weight determination 
method remains essentially subjective. Moreover, the infor- 
mation needed to complete the error levels may not be 
available (undocumented data, data lacking in the vicinity 
of open domain limits). Because of the uncertainties of 
quantifying a priori the confidence that may be placed in the 
observations and boundary conditions and the necessity of 
controlling the impacts of the weights, it is necessary to 
explore different configurations by computing several 
approximate of boundary conditions using different weights 
and/or different observation sets. This is why the formula- 
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tion of Eq. (18) was chosen, it is applicable in the present 
instance because the input parameters are perturbed only 
on a restricted number of nodes, i.e., the open limit nodes. 
Once the N x N  b coefficients of S -~ are computed and 
stored, the numerical cost of a guess is negligible. A 
preliminary estimate of the corresponding effects on a new 
simulation can then be made with the assistance of the 
computed value of the future solution at the data points 
used: 

Moreover, some null weighted pseudo-observations can 
be introduced into the observation set in order to have a 
"quick" look at the optimal solution in some particular 
parts of the domain. So the full system does not have to be 
solved each time as it has to be for an overall assimilation 
(which may take into account each node of the domain) and 
a prospective, semi-empirical methodology can easily be 
followed. In order to simplify the search for appropriate 
weights, it is useful to consider two separate aspects of the 
problem : the overall balance between the weights assigned 
to the solution misfits and those assigned to the boundary 
condition perturbation, on the one hand, and the modula- 
tion of the weights, normalised to unity, in each group, on 
the other hand. In fact, the reduction of RMS can be 
adjusted by modifying the overall balance, 

J ( e ) = 2 x  ( ~', p~ 1e~-6~12) + (1 - 2 )  
observations 

×(fF2q2 '(~oLOI2dsq-fF2W2 1(~o~°"12ds), 

where ~ob . . . . .  t i o n s  P~ = 1 and St2 q2 ds q- St2 w2 ds = 1, and 2 
is the adjusting coefficient of the overall balance: b ;~= 
2/(1 - 2) where 0 ~< 2 ~< 1. 

It must be born in mind that the solution misfit is due not 
only to imperfect boundary conditions and that boundary 
condition optimisation should be carried out carefully. 
Certain particular processes are not taken into account 
in the present model, such as the interaction between 
barotropic and baroclinic tides. Despite a high resolution 
mesh, some local effects are not well modelled, such as the 
very short length diurnal topographic waves. Last but not 
least, data may contain survey and analysis errors of 
unsuspected magnitude. Certain discretisation errors can 
also occur when describing the geophysical domain, 
especially as a result of imperfect knowledge of the bottom 
topography. Thus it is necessary to define a limit which 
should not be overrun and to adjust the weight balance with 
that aim. Of course, the technique used here preserves 
the hydrodynamic nature of the "optimised" solution, in 
particular, mass conservation, but going beyond this limit 

will result in unrealistic and irrelevant new open boundary 
conditions. 

Determining this limit is a difficult problem, as no exact 
criterion can be defined and empirical methods have to be 
used. It now appears necessary to seek a formalisation of 
this determination by selecting a set of criteria. One possible 
criterion is to examine the degree of efficiency of the 
optimisation procedure when the overall balance adjust- 
ment varies. When data are underweighted, the ratio 
between the reduction of the misfit between the observa- 
tions and the solution, and the perturbation level are high. 
Conversely, when data are over-weighted, this ratio is very 
low. An illustration of this graph is shown on Fig. 9. The 
behaviour of the optimisation can thus be separated into 
three phases: quick decrease of the misfit, intermediate 
phase, slow decrease of the misfit. The limits of the method 
can probably be found in the intermediate phase and 
preliminary studies have shown that this phase is relatively 
sharp, so a first estimate of b ~ could be obtained from a 
graph of the optimisation procedure's efficiency. A similar 
criterion has been studied by McIntosh and Bennett [23]. 
They also propose an additional criterion which is that the 
a posteriori error levels have to be the same as the a priori 
error levels to consider the new solution as being acceptable. 
This criterion implies that one should be able to evaluate 
precisely the a priori error levels, which is rarely the case. 

4.5. Amendments to the Dominant wave case 

This optimisation technique is developed in a linear 
problem frame. In the case of the dominant wave simula- 
tion, the solving process is only quasi-linear. A priori 
knowledge of the dominant wave velocity field is theoreti- 
cally necessary to estimate the bottom friction coefficients r, 
r', r", r"  for any wave in the spectrum. Because of the lack 
of reliable overall ocean velocity fields, the dominant wave 
is resolved through an iterative process by initialising the 
wave's velocity with a uniform velocity field and then 
solving the elevation and deriving a new velocity field from 
Eq. (34) and Eq. (35) until the friction coefficients converge. 
So, although each step of the process is strictly linear, the 
overall procedure is nonlinear. It is possible to write at 
step i, 

ai = M(o~i- 1) F(od- a) = Mi(o~o) Fi(ao) 

0ci: solution at step i 

s°: initial state of the solution, only defined on the open 
boundary. 

The initial state is the virtual state corresponding to the 
initialisation velocity field and coinciding on the open 
boundaries with the boundary conditions (as do any of the 
successive solutions). At the convergence: 

M(c~ °) = lim Mi(~°), F(a °) = lim Fi(o~°). 
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Considering a second simulation which is identical to the 
first except that the initial state is modified by adding a per- 
turbation to the open boundary conditions, the successive 
matrix and forcing vectors will also be perturbed, giving: 

M(a  ° + 6o~ °) = lim Mi(oc 0 + 60C 0) = M(ct °) + dM(~ °, dot °) 
i~cx2 

F(c~o + &o) = lira Fi(ct ° + 6~ °) = F(c~ °) + dF(~ °, 6~°). 

In order to simplify the notation, let 

M(a °) = Jg(0), M(a  ° + 6a °) = J/(60c°), 

dM(o~ °, d~ °) = dd/(fio~ ° ) 

F(0c °) = Y(0) ,  F(~ ° + a0~ °) = ~(60~°), 

6F(0~o, a0~o) = a~-(6~o). 

Subtracting the reference solution from the perturbed 
solution yields 

a~ = ~¢(a~ °) g ( & o )  _ ~¢(o) ~ ( o )  

= o) + o) + o ) a (ao o). 

The perturbation of the forcing term can be separated into 
two terms, 

a ~ ( ~ o )  = 6~ ° + a ~ ' ( 6 ~ ° ) ,  

where 6~ ° is the vector which coincides on the open limits 
with the perturbation of the boundary condition and is null 
inside the domain. 6~'(60t °) is null on the open limits and 
coincides with the perturbation of the right side term of the 
variational equation (due to perturbation of the friction 
coefficients) inside the domain. Finally, ignoring the 
second-order term yields 

6o~ ~. dg ~o% + 6~(6~o) ~ (0 )  + Jg(O) 6~'(6O~o) 

linear term ' nonlinear terms 

at the first order. 

It is necessary here to assume that the nonlinear terms are 
negligible compared to the linear term. The optimisation 
method can thus be applicable to the dominant wave case. 
The nonlinear terms are due to the bottom friction coef- 
ficients and Table II indicates that they are quasi-insignifi- 
cant outside the shallower area. Moreover, numerical 
experiments have shown that the elevation in deep ocean is 
smoothly dependent upon the velocity field, which is not the 
case in coastal regions. In order to ensure a favourable 
frame to the "linearity" assumption, three criteria should be 
applied. First, the reference simulation must already be of a 
high level of accuracy. In that case, the order of magnitude 
of the perturbation leading to the "optimal" solution is 
lower. Second, observations from high gradient areas must 

TABLE II 

Characteristic Values in the Different Oceanic Areas 

P a r a m e t e r  D e e p  ocean ,  shelves C o a s t a l  reg ions  

09 1.405189 × 1 0 - 4  s - I  1.405189 x 10 4 s -1  

2£2 1.454441 × 1 0 - 4  s - 1  1.454441 × 10 4 S--I 

C 2.50 x 10 -3  2.50 × 10 -3  

U 10 -3  to  10 -1 m / s  -1 10 -1 to  10 ° m / s  -1 

H 10 4 t o l 0  2 m  10 2 t o l 0  l m  
r, r '  10 -12 to  10 -7  s -1 10 -7  to  10 - 4  s -1 

Note. The m a g n i t u d e  o f  f r ic t ion coefficient v a r i a t i o n  be tween  deep  

o c e a n  a n d  very  sha l low reg ions  is ex t remely  high.  

be removed from the optimisation data set. Third, the 
calculation of the new solution may no longer be computed 
by using the stored coefficients of S -  l, but by solving the 
linear system through a new iterative run. This verifies a 
posteriori that the nonlinear effects are slight in the vicinity 
of the data points. The validity of this assumption when 
these three criteria are respected has been verified a 
posteriori by successfully employing the boundary condition 
optimisation method to the simulation of the M2 tide over 
realistic domains such as the Atlantic and Indian Oceans. 

In conclusion, a method is proposed here to improve the 
tidal solutions of our hydrodynamic model by reducing the 
misfits with observations chosen inside the domain. Restric- 
tions on this method are essentially that it can operate 
correctly only if boundary conditions are the dominant 
source of error. This method is of course less comprehensive 
than the full inverse problem methods which can operate 
directly inside the modelling domain. But it has several 
advantages. The first advantage is in its numerical cost (in 
terms of CPU memory size and time), which is much lower 
than for a complete inverse simulation. This lower computa- 
tional cost means that it is possible to examine several 
guesses at boundary conditions, the effects of which on a 
new simulation can be quickly estimated. A similar empiri- 
cal process may not be applicable when using an inverse 
problem method on a large oceanic basin. The second 
advantage is the conservation of the hydrodynamic proper- 
ties of the optimised solutions. In particular, mass conserva- 
tion is not perturbed as may be the case in an inverse 
method (see Bennett and McIntosh [24],  and Jourdin 
[25]).  

4. APPLICATION TO THE NORTH ATLANTIC BASIN 

Oceanic tide M 2 w a s  first modelled in the North Atlantic 
Basin, prior to the other oceanic basins. This gave the 
opportunity of testing the effect of the two above-mentioned 
optimal procedures on the level of accuracy of the model. 
This level of accuracy will also be compared to that of the 
CR [7]  and NSWC [26] M 2 solutions. The modelling 
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FIG. 2. Model Mesh. The mesh size, constrained by the bathymetry, varies from 30 km on the rigid boundaries to 400 km in the deep ocean. The 
equivalent spatial resolution in Lagrange-P2 approximation is respectively 15 km and 200 km. The high spatial resolution can be observed over the 
continental shelves. 

o 

0 

0 

~rJO° 0 ~' 4 5 0  ° 0 ~' 3 0  ° O '  0 ° O '  

FIG. 3. Control stations set. It coincides on the domain  with the set used by Cartwright and Ray [7]  to estimate the accuracy level of their solution 
derived from the GEOSAT  satellite records. All the stations are situated in the deep ocean. The open boundaries of the domain are represented by the 
thick black and white lines. 
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domain runs from approximately 0 ° South to 75 ° N o r t h  
and is represented in Fig. 2. The location of  the main 
nor thern oceanic boundary  was determined because of  the 
existence of  the regional model  o f  Flather [ 20 ] and the need 
to avoid being close to the amphidromic  points known  to 
exist between Iceland and Scotland. The southern oceanic 
boundary  follows a chain of  observat ion sites, where data  
consistent with the oceanic tide are available. Along the 
continents, semi-closed bays and  seas were excluded by set- 
ting open boundaries at their entrances, relying on in situ 
data or  high-precision local models  when available, i.e., the 
Nor th  Sea, the English Channel  [27] ,  the Gulf  of  Main  
[28] ,  and the Gulf of  St. Lawrence. Most  of  the in situ data  
were drawn from the I A P S O  data  bank [29, 30, 31 ] and the 
I H O  [32]  data bank. At the contrary,  the domain includes 
the Car ibbean Sea, the Gulf  of  Mexico, and the Baffin Sea. 
Islands are taken into account  when their typical dimen- 
sions are greater than 30 km. The domain contains 11642 
elements and 25716 nodes in the Lagrange-P2 approxima-  
tion and there are 333 open boundary  nodes (see Fig. 3). 
The loading and self-attraction effects were taken from the 
overall charts of Francis and Mazzega [ 33 ]. 

The number  of  deep ocean tidal gauge sites in the N o r t h  
Atlantic is very important.  This set can also be extended 
with observations obtained from shelf stations. The spatial 
distribution is not  really homogenous  but  almost. In  order  
to be consistent with the compar isons  made by Cartwright  
and Ray between the CR model  and observations, the same 
set of  accuracy control  observations has been kept (see 
Fig. 3 and Table III).  

5.1. The Reference Solution 

In order  to enable comparisons  to be made between the 
two optimisation procedures,  a reference solution has to be 
defined. As the optimised ba thymetry  in theory ensures 
better matr ix coefficients, it has to be used in the open 
boundary  condit ion optimisation. Otherwise, the relation 
between the boundary  condit ions and inner values of  the 
solution would  be affected and might  lead to inconsistent 
per turbat ions of the optimal boundary  conditions. Thus the 
reference solution, noted CEF1,  was computed  with an 
already optimised bathymetry  and is shown on Figs. 4 and 5. 
The t ime-dependent discrepancy between the observations 
and the solution is defined by d~(t) = [ a  cos(cot __G)] idata - -  

[ a  c o s ( c o t -  G ) ]  m ° d e l  = ~ ( 0 ~  data exp(jcot)) - ~ ) ~ ( 0 ~ m ° d e l ( , ~ i ,  (Pi) 

exp(jcot))=9t(3~iexp(jcot)), where 6 ~  is the complex 
= da t a  __ 0 ~ m o d e l ( ~ i ,  difference: fi~g ~g cpg) = dg exp(j0t); d~ 

represents the greatest discrepancy which can be observed 
on a period. The RMS of the max imum misfits between the 
control  observations and solution constants is defined by 

R M S :  N/(1/N)~ I~il 2: N/(1/N)~ d 2, 
N N 

TABLE III 
Location and Name of the Control Set Stations, in Eastward 

Longitude and Northward Latitude 

N ° Stations Longitude Latitude 

1 IAPSO.l.l.30 - 28 °46' 60 ° 12' 
2 P694 - 52054 ' 5400 ' 
3 IAPSO.l.l.35 - 13051 ' 53o35 ' 
4 IAPSO.l.l.33 - 25 °6' 53°31' 
5 IAPSO.1.2.36 -40030 ' 44°28 ' 
6 IAPSO.I.I.40 - 27057 ' 41 °25' 
7 IAPSO.l.l.74 - 15°3 ' 40017 ' 
8 Flores Island - 31 °7' 39028 ' 
9 IAPSO.l.l.42 - 14015 ' 36040 ' 

10 IAPSO.l.l.72 -29023 ' 33058 ' 
11 IAPSO.1.2.38 -41010 ' 33o55 ' 
12 Funchal (Madeira) - 16055 ' 32028 ' 
13 St. George (Bermuda) -62042 , 32°22 ' 
14 IAPSO.1.2.15 -76048 ' 28027 ' 
15 IAPSO.1.2.5 - 67°31' 28 °13' 
16 IAPSO.1.2.39 - 43°58 ' 26o34 ' 
17 IAPSO. 1.2.9 - 69 o 19' 26 °27' 
18 IAPSO. 1.3.13 - 48 °49' 14°41' 
19 IAPSO.1.3.15 - 51 °32' 700 ' 

Note. Most of the stations come from the IAPSO data bank. 

where I I denotes the complex modulus.  The RMS of the 
time averaged misfits with the control  observat ion con- 
stants, noted RMS*,  is defined by 

R M S * =  ( I / N ) ~ [ ( I / T )  [di(t)]2dt] 
N 

J = ( 1 / N ) ~  [ ( I / T )  (dicos(cot+Oi))2dt] 
N 

= x/~ RMS. 
2 

(As both  definitions give analogous estimates, either the 
first or  the second can be used to evaluate the performances 
of the model. In the following, the first one will be retained 
as the second one is not  explicitly mentioned.)  The level of  
accuracy in terms of  the RMS of  this solution is of  the same 
order as the N S W C  and CR models as shown in Table V. 

5.2. Bathymetry Optirnisation 

The smoothed  and optimally designed bathymetries were 
not  represented here because they are too  close to enable a 
visual comparison.  So only the differences are shown in Fig. 
6. The regions where the two bathymetr ic  fields are the mos t  
significantly different are the Atlantic ridge, the continental  
edges, and the vicinity of  the small islands. In these areas, 
the variations in bo t t om topography  slopes are very signifi- 
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FIG. 4. Chart  of  the M 2 amplitude in metres of  the reference solution CEF1. The magnitude is at its m in imum on the amphidromic points and 
ncreases on continental shelves• 

-99" O' -60 ° O' -30 ° O' 0 ° O' 
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FIG. 5. Chart  of the M 2 phase lag in degrees of the reference solution CEF1. Phases turn around the amphidromic points. 
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FIG. 6. Chart  in metres of  the difference between the classically smoothed and optimised model bathymetries. The difference is mainly in the range 
between - 2 5  m and + 25 m. The difference is most  significant on the continental edges and over the Atlantic Ridge. 
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FIG. 7. Amplitude in metres of the complex difference between the M 2 solution computed with an optimised bathymetry (CEF1) and a classically 
smoothed bathymetry (CEF2). The difference is max imum in the Labrador Basin (4 to 7 cm). 
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cant. Most of the main differences are situated on the ridge, 
where they can attain _+ 100 m in an area 20004000 m 
deep. These areas aside, the differences are limited to 
between - 2 5  and + 25 m over the domain. The two fields 
may be considered very close, and this fact is statistically 
confirmed as the mean difference value is about  1 m and the 
corresponding RMS is about 33 m.These values have to be 
compared with the mean depth of the domain, which is 
about 4500 m. For  the same reasons as for the bathymetric 
fields, the solution computed with the smoothed 
bathymetry (all other input data remaining identical to the 
reference simulation), noted CEF2, was not represented 
here because its overall features are similar to the reference 
solution. The resulting differences are shown in Fig. 7. As 
shown, the amplitude of the difference remains very small in 
the centre of the domain ( < 1 cm), in the Norwegian Basin 
and on the open boundaries (where the two solutions are 
kept identical through the boundary conditions). But it 
quickly rises to 3 cm near most continental coasts. A large 
area, where the difference attains 5 cm and more can be 
observed in the Labrador Basin, at the entrance of the 
Baffin Sea. Some local high extremes appear on the 
Amazonian cone and near the Hudson Strait, some lower 
extremes can be seen on the coasts of Florida and near 
Brittany. Considering the actual level of accuracy of the 
tidal models in the North Atlantic Ocean (see Table V), the 
difference between the two solutions cannot be ignored. It 
should be noted that, although extremes are situated in 
shallow water regions, there are no direct correlations 
between regions where the two bathymetries are 
significantly different and regions where the two solutions 
diverge. It is clear that the changes in the model bathymetry 
introduce an overall modification of wave propagation. It is 
negligible locally, but propagation in the domain of the 
information from the open boundary conditions integrates 
this modification and the overall effects on the solution 
become significant. As can be seen in Table V, the level of 
accuracy attained by CEF2 is slightly worse than for CEF1 
in terms of RMS. So the use of an "optimal" bathymetry 
improves the solution. The improvement (0.5 cm) may be 
considered poor, but it must be noted first that it represents 
8.5 % of the CEF1 accuracy level. Another crucial point is 
that the difference between the two bathymetric fields is of 
the same order as the accuracy of the bathymetric data bank 
ETOPO5,  from which they are drawn. That  means that the 
possible errors in this bank introduce a strong basic noise 
when studying the two different procedures for obtaining 
the model bathymetry, partly concealing the effects of the 
optimisation. In conclusion, the effects of changing the 
model in that9.20 0 TD1 1 1 rg32.72 c0 rg-0.96 Tc0 Tw(_d4.32 Tm Tj1rg0.52 Tc0a0 Tw(this ) 14.64 0 TD1 1 Tjn.80 0 TD1 1 1 rg0.40 Tc0 1 1 1 rg0.1 rg0.56 Tc9(0.5 ) Tj18.48 0 TD1 ted 
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- 9 0  ° O ~ - 6 0  ° O '  - 3 0  ° O ~ 0 ° 

FIG.  8. Locat ion  of the s ta t ions  used in the bo un da ry  condi t ion  opt imisa t ion procedure  (black circles). Only  shelf and  pelagic s ta t ions  have been 
included in the opt imisa t ion  set. The  opt imisa t ion  and  control  set have  no c o m m o n  element.  

level (0.5 to 3 cm) appears in the centre of the basin. It 
reaches about 6 cm on the continental coasts and rises to 
more than 10 cm in the Labrador  Basin. The mean absolute 
difference over the domain is 3.3 cm and the corresponding 
RMS is 3 cm. 

O<L<0.31 

5. 

1 

1.3<L<0.6 

i t , 

0.6<),< 1 

i 
i 
i 
i 
i 

2 1 

2.5~1 

Magni tude  in cent imeters  of  the residual (after op t imisa t ion)  

3 
i i 

5 .co 7.$8 

FIG. 9. 
RMS between the observations and the solution (vertical axis) versus 
magnitude of the perturbations of the boundary conditions (horizontal 
axis): 1 is a good working area, 2 is a transition area, 3 is a bad working 
area. The global balance has been chosen to fit the limit between the areas 
1 and2; 2 is the adjusting coefficient in the cost function J(E)= 
2 × ('~observations p 2 leg-Off~l 2) 4-(1 --)~) × (~;2 q2 i~ctOl 2 d s +  ~r2 w 2 iO~to"[2 ds). 

The inter-comparisons between CEF1, CEF3 and obser- 
vations of the control set are presented in Table IV. Dif- 
ferences which are greater than the RMS of the amplitude 
(3.5 cm) and phase lag (5.3 °) of CEF1 have been labelled 
with a star. The improvement in accuracy is obvious when 
comparing the number  of labelled values in the CEFI  and 
CEF3 columns. The CEF3 amplitude misfit is less than 3 cm 
at each station and the solution shows a phase lag misfit 
which is over 5 ° at only two stations. The amplitude RMS 
decreases to 1.3 cm and the phase lag RMS decreases to 
3.7 ° . The last three columns illustrate the level of accuracy 
of the CEF solutions in terms of maximum error, which 
takes into account both amplitude and phase misfits. Most  
of the stations show a gain in accuracy (represented by the 
negative values). The only significant increase in the misfit 
occurs for station 10. As the optimisation method is based 
on least square procedures, it levels the misfits by decreasing 
the greatest and possibly increasing the lowest ones when 
they are partially inconsistent with the other data. The 
maximum misfit (9.9 cm) is observed at station 9 and is 
essentially due to a phase lag misfit ( - 6 . 6  °) combined with 
a large amplitude ( ~ 86 cm). It should be noted that the CR 
model indicates a similar misfit ( - 1.6 cm and - 8 . 2  °) at this 
station. Comparing this station to other stations situated in 
the same area showed that station 9 may present a problem 
on the M2 tidal constants and should be removed from the 
control set. However, in order to maintain the same control 
set as Cartwright and Ray, it was retained for this paper. 

581/114/2-8 
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FIG. 10. Amplitude in metres of the complex difference between the M2 solution computed with the initial boundary conditions (CEFI) and with 
the optimised boundary conditions (CEF3). The difference is at its maximum in the Labrador Basin (10 to 20 cm). 

Subsequently, it should be removed for any station inter- 
comparison set. However, the overall level of accuracy, in 
terms of the above RMS, which indicates the RMS of the 
maximum misfits, is 3.2 cm. The timeaverage of the complex 
error leads to an RMS* of 2.3 cm and should be compared 
to the accuracy of the estimation method (i.e., comparisons 
with the observations). It is quite difficult to estimate the 
level of accuracy of the observations, but it is usually 
accepted that M2 data from deep sea stations is accurate 
within about 1 cm. This obviously depends on the charac- 
teristics of the recording and analysis and of the local 
amplitude of the wave. However, it may be concluded that 
the accuracy of CEF3 is now close to its optimum level and 
the choice of balance between observation misfits .and 
boundary condition perturbations is justified a posteriori.  

CONCLUSION 

Two optimisation methods have been presented for 
improving the performance of our hydrodynamic tidal 
model. The first method consists in adjusting the 
bathymetric terms in order to minimise discretisation 
errors. At the same time, it gives a set of criteria for 
describing the bottom topography in a manner that is 
consistent with the variational formulation of the wave 
continuity equation almost everywhere over the modelling 

domain. The second method consists in assimilating tidal 
data inside the modelling domain by seeking the optimum 
boundary conditions which will minimise misfits between 
the observations and the solution. This method is based on 
optimal control methods and the link with the generalised 
least square methods has been established. Weighting 
remains the crucial point of the assimilation problem and 
this critical step has been carefully discussed. The perfor- 
mance of these two methods has been illustrated by an 
application to the M 2 tide in the North Atlantic Basin. The 
level of accuracy of the corresponding solutions has been 
evaluated by computing misfits with the observations on a 
standard set proposed by Cartwright and Ray [7]. The 
RMS, in centimetres, computed for NSWC, CR, CEF1, 
CEF2 and CEF3 at the control stations are summarised in 
Table V. The misfit between the observations and the CEF 
solution has been significantly reduced by 39.5 % by using 
the boundary condition optimisation procedure, which is to 
be compared with the 8.5 % RMS decrease due to the use of 
an optimum bathymetry. The overall accuracy of the CEF 
solution has almost been divided by two by using both 
procedures, which represents an important relative gain 
although the initial state of modelling (CEF2) is already of 
good quality in terms of RMS. It should be noted that the 
RMS level of the CEF3 solution, computed on the standard 
validation set, is lower than that of the other solutions used 
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T A B L E  IV 

I n t e r c o m p a r i s o n s  wi th  the in s i tu  Data  of  the Con t ro l  Set Stat ions  
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Observations CEF 1 CEF3 

N ° a G a G 3 a  3 G  a G da  ziG 

CEF1 CEF3 

d d dd 

1 69.9 183.0 67.1 184.2 -2 .5  1.2 70.0 185.5 0.4 2.5 2.9 3.1 +0.2 
2 40.2 297.0 36.3 282.8 * -3 .9  * -  14.2 41.5 292.8 - 1.3 -4 .2  10.2 3.3 -6 .9  
3 98.3 142.0 91.2 144.5 *-7.1  2.5 95.3 144.0 - 3 . 0  2.0 8.2 4.5 -3 .7  
4 52.6 145.0 49.7 148.3 - 2.9 3.3 51.2 147.9 - 1.4 2.9 4.1 3.0 - 1.1 
5 14.7 31.0 13.0 22.0 -1 .7  * -9 .0  14.5 26.0 - 0 . 2  -5 .0  2.8 1.3 -1 .5  
6 46.7 73.0 43.0 71.5 * -3 .7  - 1.5 45.9 71.4 -0 .8  - 1.6 3.9 1.5 -2 .4  
7 88.0 74.0 80.7 73.9 * -7 .3  -0.1 85.3 74.2 -2 .7  0.2 7.3 2.7 -4 .6  
8 38.5 59.0 35.5 54.9 - 3.0 - 4.1 37.8 55.5 - 0.7 - 3.5 4.0 2.4 - 1.6 
9 85.6 68.0 81.6 60.8 * - 4.0 * - 7.2 86.4 61.4 0.8 * - 6.6 11.2 9.9 - 1.3 

10 36.7 43.0 36.3 42.6 -0 .4  -0 .4  38.7 43.9 2.0 0.9 0.5 2.1 + 1.6 
11 25.7 10.0 26.8 11.3 1.1 1.3 27.0 12.3 1.3 2.3 1.3 1.7 +0.4 
12 72.1 46.0 68.8 44.9 -3 .3  -1.1 72.9 46.0 0.8 0.0 3.6 0.8 -2 .8  
13 35.7 358.0 37.8 359.0 2.1 1.0 35.2 355.3 -0 .5  -2 .7  2.2 " 1.7 -0.5 
14 40.8 2.0 44.4 6.2 *3.6 4.2 40.7 0.7 0.1 -1 .3  4.8 0.9 -3 .9  
15 34.0 359.0 36.0 4.0 2.0 5.0 33.1 359.0 -0 .9  0.0 3.6 0.9 -2 .7  
16 15.0 329.0 15.9 341.3 0.9 "12.3 16.0 339.9 1.0 "10.9 3.4 3.1 -0 .3  
17 31.7 0.0 34.9 6.6 3.2 *6.6 32.0 1.3 0.3 1.3 5.0 0.8 -4 .2  
18 32.9 233.0 31.4 229.0 - 1.5 -4 .0  32.7 231.1 -0 .2  - 1.9 2.7 1.1 - 1.6 
19 57.3 222.0 54.9 218.0 -2 .4  -4 .0  55.7 219.9 -1 .6  -2.1 4.6 2.6 -2 .0  

RMS 3.5 5.3 1.3 3.7 

Note.  Tidal amplitude (a) in centimeters, phase lag (G) in degrees, related to Greenwich, amplitude of the complex difference (d) in centimeters. The 
differences marked with an asterisk those are whose absolute value is greater than the corresponding RMS computer for the CEF1 solutions. A negative 

value of 3 d  means an improvement with respect to the reference solution CEF1. 

for comparisons. Thus, although the boundary condition 
optimisation method is not as sophisticated as some existing 
assimilation methods, it considerably improves the 
accuracy of the tidal solution with a much lower numerical 
cost and is easier to use than a full assimilation method. 
Coming back to the accuracy required in tidal applications, 
the use of bathymetry and boundary condition optimisation 
methods appears to be an essential step in meeting these 
objectives in relation with the present hydrodynamic tidal 
modelling approach. 

T A B L E  V 

R M S  and  R M S *  of  the Misfits be tween Obse rva t ions  and  

Solut ions ,  in Cent imetres ,  C o m p u t e d  wi th  the Con t ro l  Sta t ion Set 

NSWC CR CEF1 CEF2 CEF3 

RMS 6.4 4.4 5.3 5.8 3.2 
RMS* 4.5 3.1 3.7 4.1 2.3 

Note.  The accuracy of the CEF1 and CEF2 solutions is in the range 
between those of NSWC and CR. The accuracy of CEF3 is the best of all. 
RMS is related to the maximum in time misfits; RMS* is related to the 

averaged in time misfits. 

A P P E N D I X  I: M O D E L  F O R M U L A T I O N  A N D  

B O U N D A R Y  C O N D I T I O N S  

Below is a fully detailed description of the hydrodynamic 
model developed by Le Provost and Vincent [ 11 ]. 

1.1 The Basic Equations 

The continuity equation is 

~ht + V. =0.  (20) (hu) 

The momentum equation, in its nonconservative form is 

an G ~-+ ~(u)u+ g W + ~  llulIu+2~ A u=V// 

with 

~, sea surface deniveUation 

h, instantaneous water depth: h = H + 0t 

u, barotropic velocity 

/7, tidal potential 

(21) 
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fl, Earth's rotation: f = 212 sin cp 

Cy, dimensionless friction coefficient (typically 2.5 x 
1 0 - 3 ) .  

Following Hendershott [34]] ,  tidal potential takes the 
form 

H(2, cp)= g [(1 
H2(2, q~) 

+ k 2 - h 2 )  
k g 

+ If  ')cos dx' 

with 

(a, 2, cp): geocentric coordinates 

H2(2, cp): astronomical potential 

h., k. : Love numbers 

G(2, rp, 2', (p'): Green's loading function, 

where 2 is the eastward longitude east of Greenwich and (p 
is the latitude north. Actually, HE is the first term of the 
expansion (in Legendre polynomials) of the complete 
astronomical potential. 

1.2. The Model Equations 

The formulation developed by Le Provost et al. [ 3 ] is 
summarised here. Assuming the spectral expansion in time 
of the tidal unknowns, derived from the discrete spectrum of 
the tidal potential: 

t: Greenwich Mean Time (universal time) 

Vok: initial phase of the equilibrium constituent k at 
Greenwich 

cok: frequency of constituent k 

H2 = Z H2k exp(js2) exp(j[~ot + Vok ] ) + c.c 
k 

where s depends on the species of the constituent k (s -- 1 for 
diurnal tides, s - - 2  for semi-diurnal tides). Elevation and 
velocity are expanded in a similar way: 

~k(2, Cp) = ak exp(--jGk), /Zk(2, Cp) = Uk exp(flPk), 

Vk(2 , Cp) = 1)k exp(jzk) 

h(2, ~o, t )=  H(2, ~o)+ ~ C~k(2, ¢p) exp(j[-~% t + Vok]) + C.C. 
k 

u;.(2, ~o, t) = u°(2, ¢p) + ~ pk(2, ~0) exp(j  [~okt + Vo~]) + c.c. 
k 

u~o(2, ~o, t) = u°(2, qg) + ~ v~(2, q~) exp(j[og~t + Vok]) + C.C. 
k 

The existence of a dominant wave  (~1, ]AI, Y1) in terms 
of velocity (such as the mean lunar tide M2 in the North 

Atlantic) allows the bottom friction term to be linearised 
(Kabbaj and Le Provost [35 ] ]) for any waves in the tidal 
spectrum: 

[Cfllull ul - [  rlzk+r'Vk ] 
L// Jk - Lr"~k + r"VkJ' 

where r, r', r", r" depend only on the dominant wave 
velocity field (/z l, 1)1). Bottom friction terms related to the 
dominant wave are 

r = r" = -~ R, r' = - r" = j Csv{ R ' . , 1  (22) 

The terms R and R' are computed from the dominant wave 
velocity field: 

R = -~2 ~ [ Goo + G°212Jl j (23) 

R' 1 N//A 1 "1- v 1 Go2 = e  - ~  (1 2 1/2 2 2 - J 1 )  • (24) 

Bottom friction terms related to the other waves are 

r=-~(R+R' ) ,  r'=r" =Cf r" = - ~ ( R - -  R'). 

(25) 

The terms R, R' and R" are computed from the dominant 
wave velocity field: 

3 2 
R -  2 V/2 ~ l  + v2 G°°' (26) 

Rt= 5 ~ G02 ]A2 - -  VI22' (27) 
2 2J1 p~ + v 1 

R " =  ~ 2  ~ G ° 2  ~/1Y1 
2 2J, f l l  2 "3V 1 )2 COS(J(1 - -  0 1 ) ,  ( 2 8 )  

where 

2 2 
~ / lVl  sin2.- . J12 ---- 1 - 4 , 5 - - - 2 ,  t~'l - , r l ) ,  

~/'/1 -t- "91) 

J = x/2J1/(1 + J1) 

e = + l  if 0 < ~//1 - - X l  < 7~, 

e = - I  if re< 0 1 - Z 1  <2re 

23/2 
Goo = (2 - -  j 2 )  -1/2 E(J) 

7~ 

25/2 { 2(I - J 2 )  } 
Go2 = ~ ( 2 - j 2 )  -1/2 E(J)+ j2 [E(J)+F(J)] ," 

E and F are the second- and first-order elliptic integrals. 
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For astronomical waves (i.e., waves which are generated 
directly by astronomical forcing), the spectral quasi- 
linearised system is 

1 [-OH[tk O H v  k COS ~o 1 
Jogkak + - -  |--7;---, + = F k (29) 

A a cos q~ L C a  

g Oak 
(jogk + r) ~k + (r'-- f )  Vk + - -  -- F2 (30) 

a cos q~ 02 

(r" + f )  Izk + (jogk + r") V~ + g &~k a~-~=F~k (31) 

with 

F~,=0 

F~ g O {  n2,k + } 
acos~002 ( l + k 2 - h 2 )  g f l  °~kGc°srpd2d~° 

F~k:g~- -~{ ( l+k2- -hz )H2 'k+f f °~kGC°sgd2d~°}  

where g is the gravitational constant. The loading and 
self-attraction potential is assumed to be a priori known in 
order to maintain the explicit aspect of the equations. The 
boundary conditions associated with the system Eq. (29), 
Eq. (30), and Eq. (31) over a domain are 

Ilk" lie = 0 along coastal boundaries/"1 

ek = CO0 prescribed along open ocean limits/"2- 

In the following, and in order to simplify the notations, the 
wave index will be omitted when the nature of the wave does 
not affect the equations. Eliminating velocity in Eq. (29) 
yields 

jo9 cos cp~ + ~-~ B D 
cos ~o 02 

O {  &x O~} 
+~-~ A c o s q ~ - ~ - C  N = F  (32) 

with 

F = F~ cos q~ + ~ { BFu -- DFv} 

E = - -  

+ ~ (AF v -- CF~) cos q~ 

a 2 

gH 
[o92 _ f2  + f(r '  -- r") + r'r" -- rr'" --jog(r + r"') ] 

r + jo9 
A -  

E ' 

r " + f  
C -  

E ' 

r" + j ~  
B = -  

E ' 

r' - f  
D =  

E 

Equation (32) is a second order elliptic equation where the 
elevation remains the only unknown. 

1.3. The Variational Formulation 

The tidal elevation corresponding to a wave of the spec- 
trum can be obtained from Eq. (32). The problem is written 
under its variational formulation and application of Green's 
theorem yields: 

Considering 12 the modelling domain, the Sobolev space 
H ~  of the complex-valued functions and first derivatives 
square integrable on the domain t2 and introducing a class 
of subspaces of H 1 defined by 

W~o(r) = {~ • HLIc,,- = ~o}.  

Find a function ~ of W~o(/"2) such that 

L(~, fl) = F(fl), Vfl • Wo(F2) (33) 

with 

and 

+ (AFv - CF,~) cos  ~o ~ d,~ dq,, 

where fl is the complex conjugate of ft. 
The conditions of existence and unicity of the solution for 

each wave of the tidal spectrum, consisting of certain 
assumptions of smoothness and orders of magnitude of the 
friction coefficients, have been precisely defined by Le 
Provost and Poncet [2]. The velocity field can be obtained 
from the solution 0c by the relations of Eq. (34) and Eq. (35): 

; , [ (1  O a) a )] 
lU= B ~oscp02 gF~ --D \~ -~- -grv  (34) 

v C 1 a 

The friction coefficients r, r', r", r"  qdepend on the nature of 
the wave considered (dominant or secondary) and require 
the prior resolution of the dominant wave. Two different 
problems were then distinguished: first, solution of the 
dominant wave, using an iterative process to compute the 
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friction coefficients; and second, solution of the other 
astronomical waves. The second problem is purely linear, 
whereas the first one is nonlinear through the iterative 
process. 

APPENDIX II: FINITE ELEMENT DISCRETISATION 

This appendix describes how the finite element technique 
is applied to the discretisation of the continuity equation. 
The basic element is the triangle, which contains three nodes 
in the Lagrange-P1 approximation, and six nodes in the 
Lagrange-P2 approximation. The interpolation polyno- 
mials P~ are defined on a reference rectangular triangle 
denoted R. Interpolation of a function f, known at the nodes 
of an element, is performed by transferring the computation 
into the reference triangle, using an affine transform, 
illustrated on Fig. 1: 

T t the affine transform: D t ~ Reference rectangular triangle 

(4, cp) ~-* (x, y). 

The index arrays are defined as follows: 

q(i, l): number of the node of 12 t corresponding by the T t 
transform to the ith node in R 

t(n, 1): number of the node of R which is the image of the 
node n, belonging to D t, by the Tt transform. 

So the interpolated functionfis defined over the element by 

f(2, q~)la,= ~ f~P,(t,,)(x,y). (36) 
n ~ g2 l 

The continuity equation (33) is discretised by seeking the 
solution ~ in the vectorial space V of the complex-valued 
polynomials of degree equal to or lower than the degree of 
the selected Lagrange approximation. Let N be the total 
nurfiber of nodes in the domain. A natural base B of Vis the 
set of interpolation polynomials: 

B = { f l , , n • [ 1  .... ,N],where fl, la,---O VnCf2 t 

fl, l a , -  P,(t,,) Vn•£2t. 
(37) 

The discrete solution can be written 

Find a function 0~ of l~O(Fe) such that 

L(o~, fl) = F(/~), v/~• g~o(r:). (39) 

A necessary and sufficient condition is that Eq. (39) must be 
verified by each element of a base of the vectorial space 
g/0(F2). A simple base of IY~o(F2) is the subset of B related 
to the inner nodes of the domain (i.e., each node of the 
domain except those belonging to the open limits). In order 
to simplify the following developments, the two sets can be 
defined as 

A. = {elements I2Jnode n • I2t}, 

V. = {nodes  m / A  n ~ A m ~ ~ } .  

The n th equation of the hydrodynamic system is obtained 
by applying Eq. (39) to the nth base element. A particular 
term of L(a, fl) is developed by 

ff,• O~ Off IA,n = A(2, ~o) ~ ~ COS ~o d2 d~o = 2 I~,,,, (40) 
12 

where I~a,, is the contribution of the element l to the discrete 
equation written for the n th basic polynomial. Substitution 
of Eq. (37) in Eq. (40) gives 

A,n  - -  A (  2 ,  (p ) cos ~9 ~ Of.m~m( ~ , (]9) - ~  d 2  d (p .  

! 1 

Because of the properties of the interpolation functions, I t A,n  
is equal to zero for each element that does not contain the 
node n. So the integral can be simplified by 

I a , .= 2 A,. = Z j l  . . . .  °~m, where 
121~A n ~'2 n m E ( 2 l  

fft2 OP,(m, l) OP,(.,t) jtA,m,n = ~ A(2, ~) COS ~o a~o a~o d2 d~o. 

(41) 

j t  is the contribution of the node m m to the discrete h , m , n  

equation written for the n th basic polynomial. Reorganising 
Eq. (41) by grouping the common terms related to the 
node n and its neighbour m yields 

N 

~(,~, ~o)= E ~,,Pn(2, q'). 
n=l 

The discretised formulation of Eq. (33) can be written 

7V~o(r) = {~ e v/~,- = =o}. 

(38) IA, n= 2 an,mO~m ' w h e r e  an, m = E 
m E V n ~'21~ (An r3 Am) 

= E A(Zq,)cos o 
f 2 l~ (An~Arn )  I 

(42) 
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Fol lowing a similar deve lopment  for each term of  the con- 
tinuity equat ion,  the following coefficients can be defined: 

t., m = 

b.,m = 

Cn, m 

dn,m = 

g21~ (An c~ Am) 

[ff , B(2,cos q~°)oe,(m,I)o,~ OPt(n'l)O~ d2 d~oJ, 
Ol~(AnC~ Am) 

Z c(x, el ax a~ 
! (2l e (An c~ Am) 

63P,(m,l) 6~P,(n,l) 

12l~ (An ~ Am) 

e~= ~.o [BF~--DFd (X,~t--T2-d~d~o , 

Consider ing the general l inear matr ix  S of the discrete 
problem,  it is possible to write 

S[~] =F, 

where 

S =  [s,,m] -= [ - t n ,  m-q-an,m + bn ,m-Cn,m-dn ,m]  

and 

Nevertheless,  the coefficients A, B, C, D are not  discretised 
by a finite element procedure,  so the integrals must  be com-  
puted  numerically.  Numer ica l  integrat ion is per formed by a 
classic H a m m e r  method,  which integrates exactly on a tri- 
angle the polynomials  xiy i when i + j is equal to or smaller  
than a " total"  degree m; m is dependent  on the a m o u n t  
N P G  of Gauss  po in t s  that  are used (cf. Dha t  and Touzo t  

[36] ) :  

(xk,  y , ) :  coordinates  in the reference triangle of  the k t h  

Gauss  poin t  in R 

Pk: weight of  the k t h  Gauss  poin t  

7: numerical  integral 

NPG 
1= ~ Pk g(xg,  Yk) "~ g(x,  y)  dx dy 

k=l  

= [ Jacobian(TI)  ] - ~- I I a  f (2 ,  q~) d2 dcp = / ,  (43) 
I 

where go Tt(2, ~0) = g(x,  y)  = f ( 2 ,  q~). 

Applying Eq. (43) to Eq. (42) yields 

I NPG 
~ln, m : Z Jacobian(Tt )  × ~ pkA(Ak ,  q~k) 

~'21~(AnC3 Arn ) k = 1 

~P,(m l) 
q~k ~ (.~k,~ok) OP,(. t) x c o s  ~ '  (Xk,~k)l" 

Applying Eq. (43) similarly to the other  coefficients, the 
actual  numerical  linear p rob lem must  be wri t ten 

The accuracy of  the numerical  integrat ion depends on N P G  
and on the complexi ty  in space of the integrated quantities. 
But on the other  hand,  the numerical  cost, in terms of C P U  
time, of  comput ing  the coefficients of  the linear system 
increases linearly with N P G .  In Table  I, some part icular  
examples  are shown. It  can be seen tha t  the total  degree m 
increases more  slowly than  the corresponding number  of  
Gauss  points. Some precision tests on a domain  where the 
ba thymet ry  is very regular in space have shown that  seven 
Gauss  points  are sufficient in a Lagrange-P2  simulation (cf. 
Le Provos t  and Vincent [ 11 ] ). 
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